The FHWA Travel Model Improvement Program Workshop over the Web

The Travel Model
Development Series:
Part I –
Travel Model Estimation

presented by Thomas Rossi Yasasvi Popuri Cambridge Systematics, Inc.

June 9, 2009

Webinar Outline

- Session 1: Introduction October 16, 2008
- Session 2: Data Set Preparation November 6, 2008
- Session 3: Estimation of Non-Logit Models December 11, 2008
- Session 4: Estimation of Logit Models February 10, 2009

Webinar Outline (continued)

- Session 5: Disaggregate and Aggregate Validation Procedures – March 12, 2009
- Session 6: Advanced Topics in Discrete Choice Models – April 14, 2009
- Session 7: Highway and Transit Assignment Processes – May 7, 2009

3

Webinar Outline (continued)

- Session 8: Evaluation of Model Validation Results – June 9, 2009
- Session 9: Real Life Experiences in Model Development, Webinar Wrap-Up – July 16, 2009

The Model Validation Process

- One of the key concepts in model validation is that each component of a model must be validated individually
- Session 5 discussed validation of crossclassification, regression, gravity, and logit models
- This session deals with validating highway and transit assignment, and the overall model

5

The New FHWA Model Validation Manual Is Coming!

- Later this year!
- More rejected titles for the new manual:
 - "Return of the Model Validation and Reasonableness Checking Manual"
 - "Revenge of the Model Validation and Reasonableness Checking Manual"
 - "Curse of the Model Validation and Reasonableness Checking Manual"
 - "Model Validation and Reasonableness Checking Manual with a Vengeance!"

Validation Includes a Lot of Things

- Checks of input data
- Reasonableness/logic checks
- Comparison of model results to independent data sources
- Sensitivity checks

7

Highway Assignment Types of Base Year Checks

- VMT
- Volumes
- Speeds

Assignment is Route Choice

- Unlike some models such as mode choice, the outputs of assignment are not for the choice itself (route) but an aggregate computation from the choice.
- Therefore, only aggregate validation is performed although we may look at a fine level of detail (links).

9

Highway Assignment VMT Checks

- Observed vs. modeled based on counts, segmented by (for example):
 - Functional class
 - Area type
 - Geography (e.g. counties)
 - Volume group

Example Standards for VMT Checks

Acceptable % Difference from Observed

Roadway Type	FHWA (1990)	<u>Michigan</u>
Freeway	7%	6%
Principal Arterial	10%	7%
Minor Arterial	15%	10%
Collector	20%	20%

11

Highway Assignment VMT Checks

- Modeled vs. HPMS
 - Model adjustment required for non-attainment areas (http://www.bts.gov/smart/cat/vmt.html)
 - Need to account for local street VMT
 - By functional class, other (geography)

Highway Assignment VMT Checks

- VMT/household, per capita
 - Reasonable ranges
 - 40-60/HH, 17-24/per capita for large areas
 - 30-40/HH, 10-16/per capita for small areas

13

Highway Assignment Volume Checks

- Screenlines and cutlines
- Compare volumes on individual links with counts
- Root mean square error

Example Standards for Screenline Checks

- FHWA
 - ~65% for volume = 5,000
 - ~42% for volume = 25,000
 - ~30% for volume = 50,000
 - ~22% for volume = 100,000
 - ~18% for volume > 150,000
- Florida

17

- 20% for volume < 35,000
- 15% for volume 35,000-70,000
- 10% for volume > 70,000
- Michigan: 5% for screenlines/10% for cutlines

Root Mean Square Error

A measure of the differences between values predicted by the model and observed values

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (V_{mod} - V_{obs})^2}{n}}$$

% RMSE =
$$\frac{\text{RMSE}}{\sum\limits_{i=1}^{n} (V_{obs})/n}$$

Percent RMSE from U.S. Models 1990-2004

Ann Arbor	34%	Fort Lauderdale	36%
Atlanta	27%	Lansing	28%
Baltimore	30%	Massachusetts	35% (statewide)
Boise	35%	Memphis	30%
Cedar Rapids	29%	Norfolk	42%
Charlottesville	22%	Phoenix	37%
Chicago	47%	Raleigh	44%
Cleveland	52%	San Diego	39%
Dallas	43%	San Juan	39%
Des Moines	48%	Tampa	46%
Detroit	43%	Washington	50%

% RMSE Checks by Market Segment

- By volume group
- By facility type
- By geographic subarea

20

What Do Validation Test Results Mean?

- Issues with the network?
- Issues with the trip tables?
- Issues with the assignment process?

21

Network Checks Using Assignment Results

- Zero volume links
- Links with high volume/capacity ratios

Highway Assignment Speed Checks

- Observed vs. modeled by functional class
- Observed vs. modeled for major highways with observed speed data

23

Volumes vs. Speeds Which Do You Try to Get Right?

- Why is it hard to get them both right?
 - Volume-delay functions are simple
 - Link travel times independent of other links
 - Some factors affecting route choice not included
 - Speed data may be of lesser quantity and quality
- What do you need from the model?
- How do you use model results?
 - Post processing

Highway Assignment Forecasting

- VMT comparisons to base year
 - By functional class, area type, other (geography, etc.)
 - VMT/household, per capita
- Volume comparisons to base year
 - Screenlines
 - Major links
- Speed comparisons to base year

25

Transit Assignment Validation

- Impossible to separate from mode choice aggregate validation
 - Assignment issues often related to inaccurate trip tables
 - Path building assumptions affect both mode choice and transit assignment
 - Assumptions about transfer rates, etc. from onboard surveys used in mode choice validation

Transit Assignment Check Estimated versus Observed

- Boardings for region by mode, time of day
- Boardings by route, group of routes, or corridor
- Transfers per trip
- Screenline volumes
- Estimated district-to-district transit trips

27

Transit Assignment Data Sources

- From transit operators
 - Boardings and alightings at transit stations
 - Route-specific boardings and fare collection data
- From surveys
 - Origin-destination data
 - Trip purpose
 - Auto availability and other demographic data
 - Access/egress modes
 - Transfers

Assigning the Expanded Trip Table From the Transit On-board Survey

- Do it during network development
- Check same things as for model trip tables assignment:
 - Boardings for region by mode, time of day
 - Boardings by route, group of routes, or corridor
 - Transfers per trip
 - Screenline volumes
 - Estimated district-to-district transit trips

29

Transit Assignment Forecasts

- Compare to base year ridership by
 - Route
 - Corridor
 - District
 - Screenline
 - Region

Overall Model Validation

- The overall results are the results of the final step (assignment)
- But results may indicate things to check in earlier model steps:
 - Screenline issues → check trip distribution
 - VMT too high or low → check trip rates
 - Link volume issues → check networks

31

Homework

Session 8